Self-cleaning of superhydrophobic surfaces by self-propelled jumping condensate.
نویسندگان
چکیده
The self-cleaning function of superhydrophobic surfaces is conventionally attributed to the removal of contaminating particles by impacting or rolling water droplets, which implies the action of external forces such as gravity. Here, we demonstrate a unique self-cleaning mechanism whereby the contaminated superhydrophobic surface is exposed to condensing water vapor, and the contaminants are autonomously removed by the self-propelled jumping motion of the resulting liquid condensate, which partially covers or fully encloses the contaminating particles. The jumping motion off the superhydrophobic surface is powered by the surface energy released upon coalescence of the condensed water phase around the contaminants. The jumping-condensate mechanism is shown to spontaneously clean superhydrophobic cicada wings, where the contaminating particles cannot be removed by gravity, wing vibration, or wind flow. Our findings offer insights for the development of self-cleaning materials.
منابع مشابه
Delayed frost growth on jumping-drop superhydrophobic surfaces.
Self-propelled jumping drops are continuously removed from a condensing superhydrophobic surface to enable a micrometric steady-state drop size. Here, we report that subcooled condensate on a chilled superhydrophobic surface are able to repeatedly jump off the surface before heterogeneous ice nucleation occurs. Frost still forms on the superhydrophobic surface due to ice nucleation at neighbori...
متن کاملSelf-propelled dropwise condensate on superhydrophobic surfaces.
In conventional dropwise condensation on a hydrophobic surface, the condensate drops must be removed by external forces for continuous operation. This Letter reports continuous dropwise condensation spontaneously occurring on a superhydrophobic surface without any external forces. The spontaneous drop removal results from the surface energy released upon drop coalescence, which leads to a surpr...
متن کاملAnti-icing surfaces based on enhanced self-propelled jumping of condensed water microdroplets.
A spontaneous and controllable removal of condensed microdroplets at high supersaturation via self-propelled jumping is achieved by introducing a designed micropore array on a nanostructured superhydrophobic surface. The fabricated surface was demonstrated to delay the ice formation for 1 hour at -15 °C with a supersaturation of 6.97.
متن کاملCapillary-inertial colloidal catapults upon drop coalescence.
Surface energy released upon drop coalescence is known to power the self-propelled jumping of liquid droplets on superhydrophobic solid surfaces, and the jumping droplets can additionally carry colloidal payloads toward self-cleaning. Here, we show that drop coalescence on a spherical particle leads to self-propelled launching of the particle from virtually any solid surface. The main prerequis...
متن کاملMicro-, nano- and hierarchical structures for superhydrophobicity, self-cleaning and low adhesion.
Superhydrophobic surfaces exhibit extreme water-repellent properties. These surfaces with high contact angle and low contact angle hysteresis also exhibit a self-cleaning effect and low drag for fluid flow. Certain plant leaves, such as lotus leaves, are known to be superhydrophobic and self-cleaning due to the hierarchical roughness of their leaf surfaces. The self-cleaning phenomenon is widel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 110 20 شماره
صفحات -
تاریخ انتشار 2013